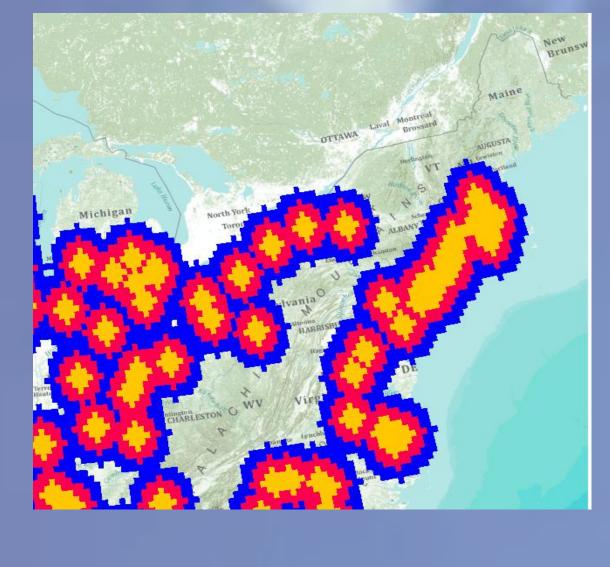
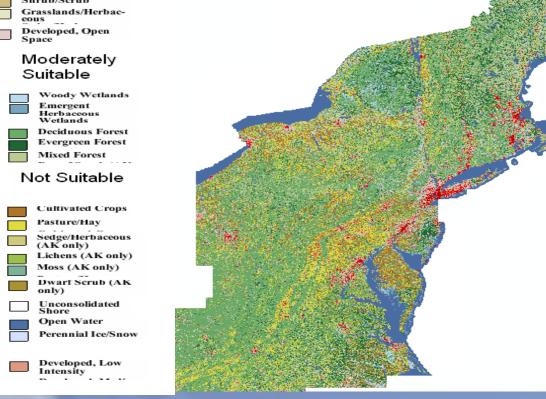
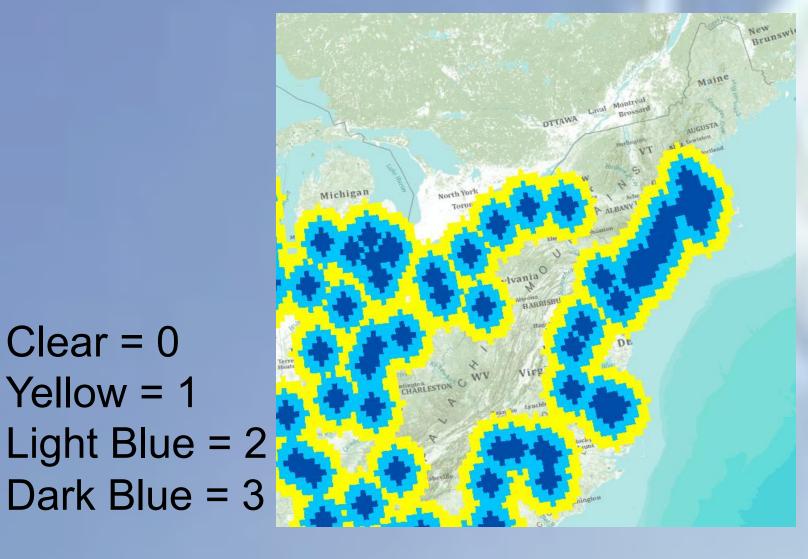

Abstract


According to the Energy Information Administration, solar power is the least produced form of renewable energy in the United States, and generally is currently used in locations far from the existing electrical grid and large population centers. Because fossil fuels are projected to run dry within 200 years, there is an increased need for renewable energy. If photovoltaic (PV) plants were constructed near major population centers, they could provide a cost effective replacement of power currently generated by fossil fuels. The purpose of this research is to determine the optimal location of potential solar farms taking into account distance from population centers, aspect, PV intensity, and land cost. Using ArcGIS, a suitability map of the Northeast Corridor of the United States was created based on distance to population centers, land usage, and slope direction. Then an estimate of the solar irradiation at each suitable site was calculated. Finally, by using the cost of land, the cost of solar farm installation based off an existing solar farm, an estimated price of PV electricity, and the estimated solar irradiation, the theoretical payoff time of each potential site was calculated. Twenty-four possible sites were located which yielded estimated payoff times of less than five years. The total estimated power output of the entire system was kWh. It was concluded that, because of the low overall power output of the system compared to the US 2008 energy production and imports, solar power was not viable as a large scale fossil fuel power replacement method. Further research is promising in the application of solar power on smaller scale projects such as schools, office buildings, or residential solar installations.


Analyzing the Optimal Location of Solar Farms in the Northeast Corridor

Eric Cawi, Loudoun Academy of Science

Euclidean Distance

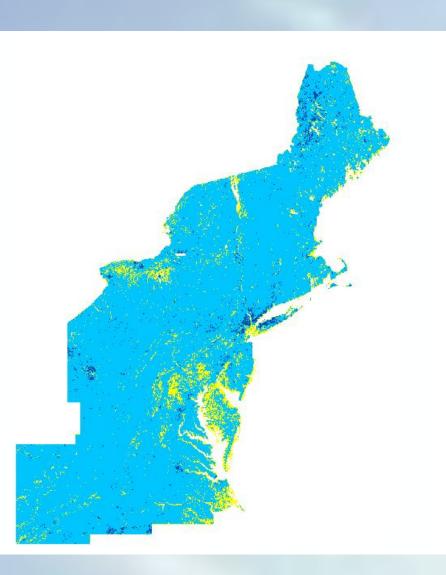


Flat (-1) Northeast (22.5-67. East (07.3-112.3 Southeast (112.5-157.5) South (157.5-202.5) Southwest (202.5-247.5) West (247.5-292.5) Northwest (292.5-337.5) North (337.5-360)

> The Reclassified Rasters were combined using the Equation (2 * Reclassified Land Cover) * Euclidean Distance Reclassifed * Aspect Reclassified. This gives double weight to the land usage while also eliminating all areas of zero suitability in any of the maps. Then all of the sites with the highest calculated suitability value were selected and labeled for analysis.

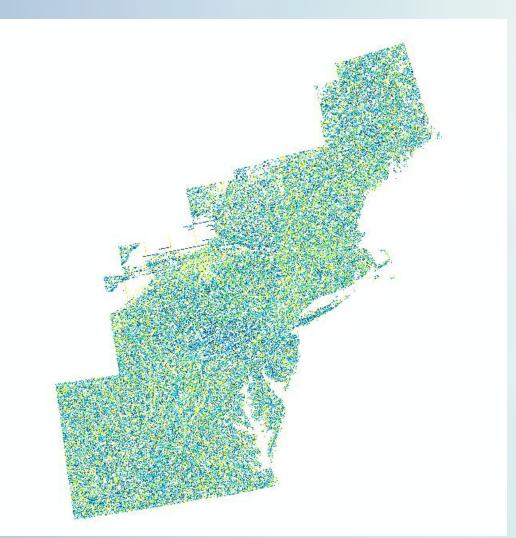
Combined Suitability

Euclidean Distance Reclassified



Land Cover Reclassified

Clear = 0Yellow = 1Light Blue = 2 Dark Blue = 3


Clear = 0

Yellow = 1

Aspect Reclassified

Clear = 0Yellow = 1Light Blue = 2 Dark Blue = 3

Sites for Analysis

All of the sites had a payoff time of less than ten years, so they can be considered feasible. Top Five Solar Potential Sites: 13, 14, 15, 16, 7 Top Five Payoff Times: 24, 23, 22, 21, 20

However, the entire system only supports 3,722 people, and didn't "replace" a significant amount of either power production or imports.

While it is economically feasible, solar power simply isn't very efficient on a macro scale.

On a micro scale, such as rooftops on small towns or a small business, it has potential to be an effective investment and power source.

Sources of Error: The cost of installation was assumed to be constant, but in reality local costs will be either cheaper or more expensive than the estimate. Also, the NREL uses statistical data to estimate the power output at each location. The actual yearly power output will be either lower or higher than the estimate.

Results and Conclusion Site Analysis

						Price of			
		PV output	Cost of			Regular	Price of		
	DV Output per	For Entire	Land	Cost of	Total	Electricit		Voarly	Davoff
<u> </u>	PV Output per							Yearly	Payoff
Si		Farm	at Site	Installation		У	Electricity		Time
e	(kWh/m2)	(kWh)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$/year)	(years)
1	5141	14394800	9740	9990000	9999740	0.125	0.25	3598700	2.779
2	5141	14394800	9740	9990000	9999740	0.125	0.25	3598700	2.779
3	5174	14487200	69117	9990000	10059117	0.118	0.236	3418979	2.942
4	5174	14487200	69117	9990000	10059117	0.118	0.236	3418979	2.942
5	5190	14532000	26139	9990000	10016139	0.122	0.244	3545808	2.825
6	5079	14221200	69117	9990000	10059117	0.118	0.236	3356203	2.997
					1004135				
7	4674	13087200	51350	9990000	0	0.145	0.29	3795288	2.646
8	4528	12678400	51350	9990000	10041350	0.145	0.29	3676736	2.731
9	4476	12532800	51350	9990000	10041350	0.145	0.29	3634512	2.763
10	4465	12502000	46372	9990000	10036372	0.096	0.192	2400384	4.181
11	4814	13479200	193360	9990000	10183360	0.116	0.232	3127174	3.256
12	4814	13479200	193360	9990000	10183360	0.116	0.232	3127174	3.256
					1004135				
13	5070	14196000	51350	9990000	0	0.145	0.29	4116840	2.439
					1004135				
14	5070	14196000	51350	9990000	0	0.145	0.29	4116840	2.439
					1004135				
15	5070	14196000	51350	9990000	0	0.145	0.29	4116840	2.439
					1004135				
16	5070	14196000	51350	9990000	0	0.145	0.29	4116840	2.439
17		13904800	46372	9990000	10036372	0.096	0.192	2669722	3.759
18		13904800	46372	9990000	10036372	0.096	0.192	2669722	3.759
19		12804400	46372	9990000	10036372	0.096	0.192	2458445	4.082
					1007590				
20	5126	14352800	85906	9990000	6	0.08	0.16	2296448	4.388
					1007590				
21	5267	14747600	85906	9990000	6	0.08	0.16	2359616	4.270
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1007590	0.00	0.20		
22	5267	14747600	85906	9990000	6	0.08	0.16	2359616	4.270
		11/1/000	00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1007590	0100	0110	2009010	11270
23	5290	14812000	85906	9990000	6	0.08	0.16	2369920	4 252
2.	J230	14012000	03900	5550000	1007590	0.00	0.10	2303320	7.232
24	5557	15559600	85906	9990000	6	0.08	0.16	2489536	4 047
24	5557	12222000	00500	3330000	U	0.00	0.10	2407330	4.047

System Analysis

Total PV Output (kWh)	EIA Estimated 2008 Energy Output (Quadrillion BTU)	ECTIMATOR	EIA Estimated 2008 Energy Output (kWh)	EIA Estimated Energy Imports (kWh)	% of Estimated Energy Output	% of Imported Energy	Yearly Electricity Use Per Person (Million btu)	,	People Supported through the entire system
335893600	73	30	2.1389E+13	8.79E+12	0.00157	0.00382	308	90244	3722

Conclusions

Works Cited

and Jonathan Heathcote. 2007. "The Price and Quantity of Residential Land in the United States. vol. 54 (8), p. 2595-2620; data located at Land and Property Values in the U.S., Lincoln Institute of Land Po Diez-Mediavilla, M., Alonso-Tristan, C., Rodriguez-Amigo, M.C., Garcia-Calderon, T., (2009). Implementation of pv plants in Spain: a case stud lers. R.M.J. (2010). Comparison of renewable fuels based on their land use using energy den Energy Reviews 78, 3148-3155 Retrieved September 15, 2010 from the Science Direct of Distributed Energy Program (2006, May 17). Electrical Grid. Retrieved September 27, 2009 from the U.S. Department of Energy web istributed Energy Program (2006, may 17). Solar Electric Power. Retrieved Energy Information Administration (2008). Annual Energy Review 2008: Energy Perspectives. R Energy website: http://www.eia zberger, A., Luther, D., and Willeke, G. (2002) Solar cells: past, present, and future. Solar Energy M Hisikawa, Y., and Warta, W. (2007). Solar Cell Efficiency Tables (Version lications, 15, 425-430, Retrieved from Science Direct Database Fossil Fuel and its impact on the environment Retrieved September 2 ates, N.E., Moses, D., Nguyen, T.Q., Dante, M., Hoeger, A.J. (2007) Efficient tandem polymer solar cells fabricated by all solution lational Renewable Energy Laboratory (2009, June 5). Dynamic Maps, GIS Data, and Analysis Tools. Retrieved September 27, 2009 from http://www.nrel.gov/gis/solar.html Lior, N., (2010). Sustainable energy development: the present (2009) situation and possible paths to the future. Energy, 35, 3976-3994. Retrieve eptember 15, 2010 from Science Direct database tovoltaic Effect. Retrieved September 27, 2009 from the

Shafiee, S., Topal, E. (2009) When will fossil fuels reserves be diminished? Energy Policy, 37, 181-189. Retrieved from Science Direct Database